若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续。
(2)在(a,b)可导。
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a)a 注意 该定理给出了导函数连续的一个充分条件。注意:必要性不成立,即函数在某点可导,不能推出导函数在该点连续,因为该点还可能是导函数的振荡间断点。 我们知道,函数在某一点的极限不一定等于该点处的函数值;但如果这个函数是某个函数的导函数,则只要这个函数在某点有极限,那么这个极限就等于函数在该点的取值。
若函数f(x)在区间[a,b]满足以下条件:
(1)在[a,b]连续。
(2)在(a,b)可导。
则在(a,b)中至少存在一点f'(c)=[f(b)-f(a)]/(b-a)a 注意 该定理给出了导函数连续的一个充分条件。注意:必要性不成立,即函数在某点可导,不能推出导函数在该点连续,因为该点还可能是导函数的振荡间断点。 我们知道,函数在某一点的极限不一定等于该点处的函数值;但如果这个函数是某个函数的导函数,则只要这个函数在某点有极限,那么这个极限就等于函数在该点的取值。